On a growth model for complex networks capable of producing power-law out-degree distributions with wide range exponents
نویسندگان
چکیده
The out-degree distribution is one of the most reported topological properties to characterize real complex networks. This property describes the probability that a node in the network has a particular number of outgoing links. It has been found that in many real complex networks the out-degree has a behavior similar to a power-law distribution, therefore some network growth models have been proposed to approximate this behavior. This paper introduces a new growth model that allows to produce out-degree distributions that decay as a power-law with an exponent in the range from 1 to ∞.
منابع مشابه
A Tractable Complex Network Model Based on the Stochastic Mean-Field Model of Distance
Much recent research activity has been devoted to empirical study and theoretical models of complex networks (random graphs) possessing three qualitative features: power-law degree distributions, local clustering, and slowly-growing diameter. We point out a new (in this context) platform for such models – the stochastic mean-field model of distances – and within this platform study a simple two...
متن کاملA Stochastic Complex Network Model
We introduce a stochastic model for complex networks possessing three qualitative features: power-law degree distributions, local clustering, and slowly growing diameter. The model is mathematically natural, permits a wide variety of explicit calculations, has the desired three qualitative features, and fits the complete range of degree scaling exponents and clustering parameters.
متن کاملA growth model for directed complex networks with power-law shape in the out-degree distribution
Many growth models have been published to model the behavior of real complex networks. These models are able to reproduce several of the topological properties of such networks. However, in most of these growth models, the number of outgoing links (i.e., out-degree) of nodes added to the network is constant, that is all nodes in the network are born with the same number of outgoing links. In ot...
متن کاملS-curve networks and an approximate method for estimating degree distributions of complex networks
In the study of complex networks almost all theoretical models have the property of infinite growth, but the size of actual networks is finite. According to statistics from the China Internet IPv4 (Internet Protocol version 4) addresses, this paper proposes a forecasting model by using S curve (Logistic curve). The growing trend of IPv4 addresses in China is forecasted. There are some reference...
متن کاملA Statistical Physics Perspective on Web Growth
Approaches from statistical physics are applied to investigate the structure of network models whose growth rules mimic aspects of the evolution of the World Wide Web. We first determine the degree distribution of a growing network in which nodes are introduced one at a time and attach to an earlier node of degree k with rate Ak k. Very different behaviors arise for c < 1, c 1⁄4 1, and c > 1. W...
متن کامل